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More than 30 billion 1oT devices by 2025 [1].

[1] K. L. Lueth, “State of the IoT 2020: 12 billion loT connec- tions, surpassing non-loT for the first time.” Nov. 2020. [Online]. Available:
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot- connections- surpassing- non- iot- for- the- first- time/
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Background: Federated Learning [2]

. . S,
* Global objective i, {F(w) £ ‘8|Fi(w)} Cloud Server
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» Local objective Fi(w) = 57 ¥ s, /(25,455 w) ﬂ

* In each training round: * """ S

a. local update L
b. model aggregation Devices

c. broadcast
Keep private data locally

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS), Ft. Lauderdale, FL, USA, Apr. 2017. 5




Motivation: Improve Training Efficiency

* FL task comprises a massive number of devices.
* Local training requires great computation resources.
* Slow devices may prolong the training time.

« Communication between devices and the Cloud takes a long
time!
« Some devices may have unfavorable channel conditions.

How to reduce

training time?




Existing Works: FEEL

 Federated Edge Learning (FEEL) [3]
 Push the aggregation task to the edge.

Cloud Server Edge Server
‘ ((( ))) Edge Server

* New challenges
e Limited coverage of one single edge server.
* Less training data than Cloud-based FL.

[3] W. Y. B. Lim et al., “Federated learning in mobile edge networks: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no.
3, pp. 2031-2063, 3rd Quart., 2020. 7



Existing Works: Hierarchical FL [4]

Cloud-based FL. i  Edge-based FL i  Hierarchical FL
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[4] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud hierarchical federated learning,” in Proc. IEEE Int. Conf. Commun.(ICC),
Dublin, Ireland, Jun. 2020. 8



Existing Works: Hierarchical federated
SGD [5]

e Extend [4] to a multi-level case.
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[5] J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Local averaging helps: Hierarchical federated learning and convergence analysis.” [Online].
Available: https://arxiv.org/pdf/2010.12998.pdf



Approach: SD-F
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e Efficient communication
among edge servers.

e Servers collaborate with
each other to get more
information.

* No additional
computation on clients.

Note: SD-FEEL is the abbreviation for Semi-decentralized federated edge learning. 10



Approach: Training Process
(1) Local Updates

3. Inter-Cluster Model Aggregation
() ()
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Approach: Training Process
(2) Intra-Cluster Model

gggveer @Ag)) 3. Inter-Cluster Model Aggregation @@A@ Ag grega tion
- - « Scheduled after
AT every 1, local
o E . epochs
' & °* Weighted average

el /,' S ?,
B« 3 Bl gep

) 2. Intra-Cluster
Model Aggregation i€Cy Sd

1. Local Update

12



Approach: Training Process
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Approach ©

(a) Ring (b) Partially-connected (c) Fully-connected

« Multi-level SGD [6] investigated a similar architecture.

* [t assumed only one round of communication among edge
servers.

« May cause may model inconsistency and degrade model performance.

« Convergence analysis is limited to [ID” local training data.

*Independent and identically distributed.

[6] T. Castiglia, A. Das, and S. Patterson, “Multi-level local SGD: Dis- tributed SGD for heterogeneous hierarchical networks,” in Proc.

14
Int. Conf. Learn. Repr. (ICLR), Virtual Event, May 2021.



Results: Theoretical Challenge

Edge Cluster

()

“

* Expected loss change involves:
 Two levels of model aggregations
* Decentralized topology among edge servers \ ,
» Multiple rounds of inter-server communication 7"

* The effect of non-IID data
« Mismatch between local objective and global objective.

Vfi(w) # V f(w)

[6] T. Castiglia, A. Das, and S. Patterson, “Multi-level local SGD: Dis- tributed SGD for heterogeneous hierarchical networks,” in Proc.
Int. Conf. Learn. Repr. (ICLR), Virtual Event, May 2021. 15



Results: Theoretical Convergence

 Model evolution

Lemma 1. The local models evolve according to the following
expression:

Wk+1 = (Wk — ’I’]Gk)Tk, k = 1,2, s 8 ,K, (10)

where

VB, if mod (k,m) =0 and mod (k,m172) #0,
Tk = VPaB, lmed (k},Tsz) — O,
I otherwise.

(1D)



Results: Theoretical Convergence
e Define a model Uy £ Zz’ec miw;(:)

A S
mi = 73

* The expected change in consecutive iterations:

EFlux1)]-ELFlux)] < —1E [[VF@e)|[2] + L7 3 m2o?

2y = i€C
—(g —UT)JH'E?TE[HW'C(I_M)”@ (12)
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Results: Theoretical Convergence

e The deviation of the local models from their mean:

Lemma 2. With Assumption 1, we have:

1K]EWI M2<8"72V2KJ
E; WX - M)y < = Z A 13

+ 2n?Vio? + 8772V K2,

Where C:|A2(P)|€[O7]‘) AA 1CC2a+1 Ca+(1 Ca)2, V3

T1T2 (7'17‘2A+ Tng_l %:ga)’ i £ (’7‘1’7'2 1CC2a + T1T§_1)
/(1 —1602L%V3), and Vo = V3 /(1 — 16n2L2V3).




Results: Theoretical Convergence

Theorem 1. If the learning rate n satisfies:
1 —nL—8n°L*V, >0,1—-160°L%V3 >0, (14)
we have:
Existed in

K a
K < - centralized SGD
& LB [IVFlE] <|gg L3 mio |7
o2 L2V 02 + 8772L2V2n2],_> Additional
) error

+
where A £ E [F(u,)]—E [F(u*)] and u* = arg min,, F(w).

* Detailed proof [7]

[7]1Y. Sun, J. Shao, Y. Mao, J. H. Wang, and J. Zhang, “Semi-decentralized federated edge learning for fast convergence on non-IID data.”
[Online]. Available: https://arxiv.org/pdf/2104.12678.pdf 19



Results: Insights from Convergence

1. When 7, =1, =1 and {% = 0, the convergence result in
Theorem 1 reduces to that of the fully synchronous SGD
algorithm [8].

2. More frequent intra-/inter-cluster model aggregation

Faster convergence

3. For inter-server communication: /

* a more connected topology
* increasing the communication overhead

[8] L.Bottou,F.E.Curtis,andJ.Nocedal,“Optimizationmethodsforlarge- scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223-311, Aug.
2018.



Results: Experimental Setup

* 50 clients, 10 edge servers.

* CIFAR-10 dataset + CNN model [4]
» Data partition: Dirichlet distribution [9]

e Baselines:
« FedAvg [2]

« FEEL with partial participation [3]

* HierFAVG [4]
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[9] H. Wang, M. Yurochkin, Y. Sun, D. S. Papailiopoulos, and Y. Khazaeni, “Federated learning with matched averaging,” in Proc. Int. Conf.

Learn. Repr. (ICLR), Addis Ababa, Ethiopia, Apr. 2020.
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Training Loss
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Results: Convergence Performance
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« Within the given training
time, SD-FEEL
converges fast and has a
higher accuracy.

« Communication among
edge servers is more
efficient.
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Training Loss
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Results: Ablation Study of T, and 1,
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» Considering training
rounds, more frequent
aggregation is
preferred.

* Within the same
training time, 74 = 3
achieves the minimum
training loss.
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Results: Ablation Study of Topology
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* A more connected
network topology
achieves a higher
test accuracy.

* More information is
collected from
neighboring edge
clusters.
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Conclusions

* Investigated semi-decentralized federated edge learning (SD-
FEEL).

 Proved convergence analysis (on non-IID data)
» Empirically demonstrated the high training efficiency.

* Provided guidelines on selection of system parameters.

* Larger aggregation frequency improves convergence speed but incurs
communication overhead.

« Multiple times of inter-server communication speeds up convergence.

 Future works: consider scenarios with device heterogeneity.

Thank you!



